If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2=91
We move all terms to the left:
7v^2-(91)=0
a = 7; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·7·(-91)
Δ = 2548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2548}=\sqrt{196*13}=\sqrt{196}*\sqrt{13}=14\sqrt{13}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{13}}{2*7}=\frac{0-14\sqrt{13}}{14} =-\frac{14\sqrt{13}}{14} =-\sqrt{13} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{13}}{2*7}=\frac{0+14\sqrt{13}}{14} =\frac{14\sqrt{13}}{14} =\sqrt{13} $
| 8y+5y=0 | | (3+7x)^2=75 | | 7x+9x=0 | | 3y+4y=0 | | 15x12=60 | | 4n–8=2n | | 6b+4=9b+9 | | 2x+3x+4x+7x+8x=360 | | |4x-8|=2x+20 | | 2÷7x÷3÷5=1÷2 | | 3p−6=3(2p+5) | | 4(x+3)^2-5=27 | | c=(134)=(79) | | -3.4m=-24 | | -56=0.8k | | 2y2=(25-y)2 | | 5x+15=110+7x-1 | | (5x=23)=(8x-49)=20 | | (14x=4)=55 | | 8x-28=10x+6 | | (2x-29)=(10x-27) | | |x-12|=19 | | (x+4)^2=(x+12)(x) | | 576=(12+x)(12) | | 24=(12+x)(12) | | 3(6-k)-2(k-5=-4 | | 2x+8=65-9x | | 3x+18+5x-6=180 | | 8x2+7x+17=0 | | (0.03x)+x=5752 | | 60=(4+x)(x) | | (12a)(11a−1)=0 |